

太陽電池に代えて、安定で安価な電気エネルギーを生成

特 許 権 者:国立大学法人名古屋大学

新しい電気エネルギーの生成手段として期待されて きた太陽電池は、光エネルギーを電気エネルギーに変 換する素子として半導体材料を用いるため、材料純度 や製造行程により電池性能の制御が難しく、その高コ スト構造が普及の大きな課題であった。本発明による 電池は、まず原子番号が5以上異なる1組の板状金属 部材(ステンレス、アルミニューム等)について、板 状の絶縁部材(上質紙等)を介して交互に積層して積 層体を形成する。次にこの積層体に放射線等のエネル ギー線を照射し、これと各金属部材との相互作用(コ ンプトン散乱等)により、各金属部材から2次電子を 放出させ、各金属部材に異なる起電力を生じさせ、こ の起電力の差から電気エネルギーを生成するものであ る。また、各金属部材の厚さ、積層数、照射面積およ び材料種類を変えることにより、エネルギーの生成効 率を容易に制御でき、所望の電気エネルギ - を簡単に 得ることができる。電池の製造コストも極めて安価で ある。エネルギー線として、特に放射性廃棄物からの 放射線を用いることにより、半永久的に使用すること ができ、また放射線以外にも電子線、電磁波、レーザ 光等も用いることも可能である。

patent review

語 解

原子番号

元素の原子核に含まれている陽子の数をいう。金属部材 例のステンレスは26、アルミニュームは13である

線等の電磁波が物質の電子に衝突すると、もと の波長より長い波長の散乱放射が起こることをいう

固体に電磁波や粒子(電子等)を照射したとき、光電効 果等により固体表面から飛び出してきた電子をいう

ラジオアイソトーブ

放射性同位元素のことで、同位元素(同一元素の間で原 子量が異なるもの)の中で、放射能を持つものをいう

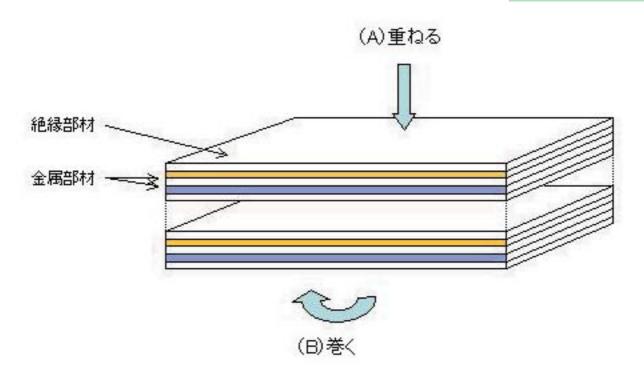
ユーザー業界

活用アイデア

発電システム

放射性廃棄物処理施設内の大型発 **電方式に適用し、廃棄物から出される強い放射線から、大出力の電** 力を無保守で半永久的に得ること ができ、また建設コストも極めて 安価となり、経済的な発電システ ムを提供できる

宇宙探査機等の人工衛星用電池に 適用し、放射線線源としてラジオ アイソトープを搭載し、宇宙空間 での過酷な環境下においても堅牢 で、安定な電力を長期にわたり供 給できる


位置標識用電池

海上位置標識(ラジオブイ)や山 岳位置標識用の無人施設用電池に 適用し、人体等に影響のない微弱 放射線の線源としてラジオアイソ トープを使用し、堅牢、無保守で安価な小電力を半永久的に得るこ とができる

market potential

将来のエネルギー問題や環境問題を解決するも のとして、CO2等の有害物質を生成しないクリー ンで安価な電気エネルギーの生成手段について、 その開発と普及が緊急な課題として要請されてい る。本発明の電池は、安価な金属部材と絶縁部材 によって構成され、構造的に極めて簡易、堅牢で あり、メンテナンスフリーで半永久的に利用でき るため、極めて安価な電力を安定に供給すること が可能である。このため、その市場は広範囲な分 野にあり、核燃料廃棄物処理施設での発電システ ム、ラジオアイソトープを使った宇宙探査機用電 池および海上位置標識や山岳位置標識等の無人施 設用電池として利用できる可能性があり、産業用 のみならず公共用、民生用としても膨大な市場創 出が期待される。

ライセンス情報番号:L2007002017

(A):金属部材と絶縁部材を平面上に幾層にも重ねて構成する場合

(B):金属部材と絶縁部材を巻き回して構成する場合

許 報

・権利存続期間:15年8ヶ月(平35.9.4満了)

・実施段階:実施無し

・技術導入時の技術指導の有無:応相談

・ノウハウ提供:応相談

・ライセンス制約条件:譲渡または許諾

出願番号:特願2003-312863

出願日/平15.9.4

公開番号:特開2005-083756

公開日/平17.3.31

特許番号:特許3861154

登録日/平18.10.6

特許流通データベース情報

・タイトル:発電方法及び電池

・ライセンス番号:L2007002017 http://www.ryutu.inpit.go.jp/db/

からご覧になれます。

参考情報

・関連特許:なし

: 15年度

• IPC : G21H 1/04

・参照可能な特許流通支援チャート

電気16 電気28 : 14年度 高効率太陽電池

: 16年度

機械10 ジェネレーションシステ

皆様からのお問合せを、お待ちしています。

この特許の問合せ先

財団法人名古屋産業科学研究所 中部TLO 技術移転部

部長 大森 茂嘉

₹460-0008 **愛知県名古屋市中区栄**2 - 10 - 19 TEL:052-223-5694 FAX:052-211-6224

E-mail:oomori@nisri.jp

もしくはお近くの特許流通アドバイザー (P119をご覧下さい)にご連絡下さい。

